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ABSTRACT 
Nonlinear FM waveforms offer a radar matched filter output with inherently low range 
sidelobes.  This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a 
Linear FM waveform with equivalent sidelobe filtering.  This report presents design and 
implementation techniques for Nonlinear FM waveforms. 
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FOREWORD 
Often, especially for power-starved radar systems, the radar designer strives to extract 
every bit of performance that he is able to coax from his system.  A single dB of 
additional Signal-to-Noise Ratio (SNR) gained elsewhere is equivalent to a 25% increase 
in transmitter power.  Alternatively, a single dB of additional SNR can have dramatic 
effects in reducing false alarm rates in target detection applications.  Consequently we 
examine herein choosing and creating Nonlinear FM radar waveforms with 
characteristics that can avoid the typical 1-2 dB of SNR degradation associated with 
sidelobe filtering that is often required with Linear FM waveforms. 
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1 Introduction & Background 
It is well known that when a signal is input to a Matched Filter (matched to the input 
signal) then the output of the filter is the autocorrelation function of the signal.  Also well 
known is that the autocorrelation function is the Fourier Transform of the signal’s Power 
Spectral Density (PSD).  A Matched Filter provides optimum (maximum) Signal to Noise 
Ratio (SNR) at the peak of its autocorrelation function, and is consequently optimum for 
detecting the signal in noise.  

A very common radar waveform is the Linear FM (LFM) chirp signal.  Its utility is that it 
is fairly readily generated by a variety of technologies, and is easily processed by a 
variety of techniques that ultimately implement a Matched Filter, or nearly so.  However, 
since a LFM chirp waveform has nearly a rectangular PSD, its autocorrelation function 
exhibits a sinc() function shape, with its attendant problematic sidelobe structure. 

Reducing the sidelobes of the Matched Filter output (actually increasing the peak to 
sidelobe ratio) is typically accomplished by linear filtering the output, most often by 
applying window functions or data tapering.  This additional filtering perturbs the 
Matched Filter result to reduce sidelobes as desired.  However, since the cumulative 
filtering is no longer precisely matched to the signal, it necessarily reduces output SNR as 
well, typically by 1-2 dB (depending on the filtering or weighting function used).1

It is well-known that Non-Linear FM (NLFM) chirp modulation can advantageously 
shape the PSD such that the autocorrelation function exhibits substantially reduced 
sidelobes from its LFM counterpart.  Consequently, no additional filtering is required and 
maximum SNR performance is preserved.  However precision NLFM chirps are more 
difficult to design, produce, and process. 

Alternatives to NLFM modulation for the purpose of shaping the PSD, such as amplitude 
tapering the transmitted signal, are not viable since typically efficient power 
amplification of the waveform necessitates operating the hardware in a nonlinear manner, 
e.g. operating the amplifiers in compression.  This substantially reduces the ability to 
maintain precision amplitude tapering.  Waveform phase remains unaffected by operating 
amplifiers in compression. 

What is desired by a radar designer is then a NLFM waveform that is 1) easily produced, 
2) easily processed, and 3) easily designed to meet target performance criteria, including 
bandwidth constraints and sidelobe reduction goals. 

The progress of technology now offers the possibility of addressing the first two points, 
namely easily producing and processing the NLFM waveform.  The advent of high-speed 
Digital-to-Analog Converters (DACs) and high-speed large-scale Field Programmable 
Gate Arrays (FPGAs) currently facilitate generating high-performance precision digital 
LFM chirp waveforms.2,3  This suggest that more exotic waveforms might now be within 
the realm of possibilities.  These same FPGAs and high-speed Analog-to-Digital 
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Converters (ADCs) allow directly sampling fairly wide bandwidth signals.  Modern high-
speed processors allow more complex filtering and detection algorithms to be employed. 

The literature discusses NLFM waveform design for the purpose of sidelobe mitigation. 

Johnston and Fairhead4 review the existing literature on NLFM waveforms circa 1986, 
and then proceed to outline a waveform design technique.  They also discuss the Doppler 
sensitivity of these waveforms. 

Keel, et al.,5 discuss a step frequency waveform employing nonlinear frequency steps.  
Griffiths and Vinagre6 provide one procedure for designing a piecewise linear NLFM 
chirp waveform.  DeWitte and Griffiths7 later extend this to continuous NLFM 
waveforms.  

Varshney and Thomas8 explore several techniques for sidelobe reduction and conclude 
“[o]verall, NLFM has better detection rate characteristics and is more accurate in range 
determination than LFM” as well as the other techniques studied.  Cook, et al.,9 discuss 
matched filter responses to NLFM waveforms. 

Butler10 discusses NLFM chirp waveform generation with Surface Acoustic Wave 
(SAW) dispersive filters. 

Collins and Atkins11 discuss NLFM waveforms applied to active sonar signals. 

We also note that NLFM waveform design and analysis is interestingly very related to the 
laser beam shaping problem, as presented in Dickey and Holswade.12

However, connecting the NLFM radar waveform that is designed to one that is easily 
produced seems generally overlooked.   

2 Overview & Summary 
We propose to generate a NLFM waveform by using a cascaded integrator/accumulator 
structure.  Several specific architectures are examined to meet target performance criteria, 
including bandwidth constraints and sidelobe reduction goals. 

We first examine a fixed parameter set to generate a fixed polynomial phase function.  
Polynomial coefficients are selected to be constant during the pulse.  

Alternatively, a NLFM waveform can be generated via integrating a stepped parameter 
set, whereby parameters are constant over specific intervals, with the pulse width 
encompassing multiple intervals.  The parameter changes in steps during the course of the 
pulse as a function of time.   

Alternatively, the parameter steps can be made a function of the pulse’s instantaneous 
frequency. 
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3 Detailed Analysis 

3.1 General Principles of NLFM chirps 
To facilitate a comparison, consider first a conventional Linear FM (LFM) chirp with 
characteristics in figure 1.  Note that the frequency ramp is linear, and the spectrum is 
flat-topped with steep sides, nearly a rectangle.  Note also that the Impulse Response 
(IPR) is expected to be nearly a sinc() function with −13 dB sidelobes. 
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Figure 1.  Example LFM chirp with (a) frequency vs. time, (b) magnitude spectrum, and (c) time 
autocorrelation function. 

Now consider the Non-linear FM (NLFM) chirp with characteristics in figure 2.  Note 
here that the frequency ramp is non-linear, with steeper slope at the beginning and at the 
end of the pulse.  The corresponding spectrum is tapered with lower magnitude at its 
edges.  This spectral shaping results in the autocorrelation function exhibiting attenuated 
sidelobes, limited to less than −35 dB.  Furthermore these characteristics are achieved 
without any SNR-robbing sidelobe filtering or window functions. 
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Figure 2.  Example NLFM chirp with (a) frequency vs. time, (b) magnitude spectrum, and (c) time 
autocorrelation function. 

 

3.1.1 Finding desired chirp rate function of time 

We limit our investigation to signals with large time-bandwidth products, which are 
typical for high-performance radar systems. 

Rayleigh energy criteria infer that for a LFM chirp of a constant bandwidth, that PSD 
must be proportional to pulse width.  Consequently, under conditions of constant 
bandwidth, the PSD must be inversely proportional to chirp rate.   

Furthermore, the principle of stationary phase infers that “the major contribution to the 
spectrum at any frequency ω is made by that part of the signal which has instantaneous 
frequency ω.”  This means that for a NLFM chirp, that the PSD at a particular frequency 
is inversely proportional to the chirp rate at that particular frequency. 

We begin by defining a generic radar waveform, perhaps an FM chirp, as 

( ) ( )tj
T
trecttX Φ⎟
⎠
⎞

⎜
⎝
⎛= exp  (1) 

where, 
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t  = time, 
 = pulse width, T

( )
⎩
⎨
⎧ ≤

=
else

z
zrect

0
211

. (2) 

The instantaneous frequency is related to phase as 

( ) ( )t
dt
dt Φ=ω , (3) 

and the instantaneous chirp rate is related to frequency as 

( ) ( )
dt

tdt ωγ = . (4) 

For a generic chirp signal, the phase becomes 

( ) ( )∫ ∫++=Φ dtdtttct γω00  (5) 

where  

0c  = reference phase, and 

0ω  = reference frequency. (6) 

We note that ( )tγ  is the component of ( )tΦ  that makes it a chirp.  Furthermore, if 
( ) 0γγ =t  for some constant 0γ  then this reduces to the LFM case.  For the NLFM case 

we expect useful ( )tγ  to be predominantly “U” shaped, indicating greater chirp rates at 
the start and end of a pulse compared to that at the middle.  This will in turn cause a 
tapering of the PSD at the band edges.  We also expect that a symmetric PSD will require 
a symmetric ( )tγ . 

Based on the foregoing analysis, we now identify the relationship of chirp rate to 
instantaneous frequency as ( )ωγ ω  and relate it to a specific window or taper function as 

( ) ( )
( )0

0
0
ωω

γ
ωωγ ω

ω −
=−

W
      for ( )

22 0
Ω

≤−≤
Ω

− ωω  (7) 

where 

0ω  = the chirp center reference frequency, 
( )ωW  = the desired taper function for the PSD, and 
 = the chirp bandwidth of interest. (8) Ω
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We reiterate that ( )tγ  is a function of time, whereas ( )ωγ ω  is the chirp rate at a particular 
frequency ω. 

We note that under these conditions ( ) 10 =W , and we typically expect ( )ωW  to be 
symmetric about its center. 

The task now becomes to find a specific ( )tΦ  that yields the desired ( 0 )ωωγ ω − .  More 
specifically, the task now becomes to find a specific ( )tγ  that yields the desired 

( )0ωωγω − . 

We also identify at this time from symmetry considerations that ( ) 00 ωω = .  
Consequently 

( ) ( )00 γγ ω = , 

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

22
γγ ω

Ω T

( )

,  (9) 

and more generally 

( )( ) tt γωωγ ω =− 0 . (10) 

Consequently we need to solve 

( ) ( )
( )( )0

0
ωω

γγ
−

=
tW

t  (11) 

with the constraint 

( ) Ω=∫
−

dtt
T

T

2

2

γ . (12) 

This suggests the following iterative procedure for finding ( )tγ . 

1) select an initial ( )tγ  consistent with a LFM chirp, i.e. ( ) Tt Ω=γ . 

2) Integrate ( )tγ  to calculate ( )tω . 

3) Adjust ( )tγ  and ( )tω  to meet the Ω constraint. 

4) Calculate ( )( 0 )ωω −tW , and then a new ( )tγ . 

5) Repeat steps 2-5 until convergence. 
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This procedure was successfully used to design the NLFM chirp of figure 2, using a −35 
dB Taylor window. 

3.1.2 Bandwidth 

From communications theory, the well-known Carson’s rule states that the bandwidth of 
a FM modulated signal is approximately twice the sum of the maximum frequency 
deviation from the carrier plus the modulating frequency.13  Consequently, since ( )tγ  
itself is typically expected to be low-frequency in nature, then the transmitted signal 
bandwidth of the NLFM chirp is expected to be approximately the chirp bandwidth 

( ) ( ) ( )[ ]02222 ωωωω −=−−=Ω≈Ω TTTT . (13) 

As with LFM chirps, we expect this to be most accurate for signals with large time-
bandwidth products. 

It is expected that the bandwidth increase over that of a LFM chirp will be fractional for a 
comparable autocorrelation width, similar to that of amplitude tapering. 

Doppler Tolerance 

Several papers suggest that an issue for NLFM waveforms is their tolerance to Doppler 
shifts, i.e., maintaining their desirable sidelobe properties when Doppler shifted.  
However Johnson and Fairhead state “the choice of window function [i.e. desired PSD 
taper for NLFM design] appears less important than previously supposed, although the 
truncated Gaussian window does give slightly better tolerance than the others to Doppler 
shift.”  Morgan14 proposes a hybrid approach to deal with this. 

We will not explore this aspect any further in this report.  At the time of this writing, a 
separate report is being prepared to address this. 
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3.2 Polynomial-Phase Chirps 
A conventional LFM chirp signal can be described with quadratic phase function 

( ) 22
10 2

t
c

tcct ++=Φ  (14) 

where, 

0c  = reference phase, 
 = reference frequency, 
 = nominal constant chirp rate. (15) 

1c
c2

This signal phase is easily generated parametrically with a double integration.  That is 

[ ]dtdtccctctcc ∫ ∫++=⎥⎦
⎤

⎢⎣
⎡ ++ 210

22
10 2

. (16) 

The digital hardware counterpart to an analog integrator is an accumulator.  The resulting 
phase is translated to an amplitude via a trigonometric lookup-table and applied to a 
DAC.  The resulting analog signal is filtered and utilized. 

We examine now an extension of this concept to a higher-order polynomial phase 
function.  Specifically we examine a NLFM chirp signal that can be described with phase 
function 

( ) ∑
=

=Φ
N

n

nn t
n
c

t
0 !

. (17) 

When  for , this reduces to the LFM chirp.  We also note that for the PSD 
tapering to be symmetrical, in this formulation 

0=nc 2>n
0=nc 2>n n for odd , that is, for = 3, 5, 

7, … 

As with the LMF chirp, this signal has the desirable attribute in that it can be generated 
parametrically with cascaded integrations or accumulations, the number of accumulators 
being equal to the order N of the polynomial.  An architecture for this is shown in Figure 
3. 
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Figure 3.  Cascaded integrator architecture for implementing polynomial phase function. 

 

We note that the instantaneous frequency for this signal is 

( ) ( )∑∑
=

−

= −
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
N

n

nn
N

n

nn t
n

c
t

n
c

dt
dt

1

1

0 !1!
ω . (18) 

Consequently, the bandwidth of the polynomial-phase NLFM chirp is expected to be 
approximately 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

−
≈Ω ∑

=

−

1
0

1

2!1
2 cT

n
cN

n

n
n . (19) 

The chirp rate is then 

( ) ( ) ( )∑
=

−

−
==

N

n

nn t
n

c
t

dt
dt

2

2

!2
ωγ . (20) 

Clearly, for a phase polynomial of order N, we need a chirp rate polynomial of order 
.  ( )− 2N

Some discussion of low-order polynomial phase functions can be found in the paper by 
Cook, et al. 
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3.2.1 Determining Phase Polynomial Coefficients 

The task is to find phase polynomial coefficients that provide the desired sidelobe 
reduction. 

One seemingly reasonable approach would be to find phase polynomial coefficients that 
allow acceptable approximation to a known amplitude weighting (window) function.  It is 
desired to accomplish this for a minimal polynomial order N.  We would expect too high 
an order N leading to conditioning problems in coefficient calculations.  Too low an order 
N will inadequately model the chirp rate, and hence cause unwanted sidelobe artifacts in 
the waveform autocorrelation function.  Recall that for a LFM chirp . 2=N

We illustrate results with a number of examples. 

Figure 3 shows the chirp rate function and waveform autocorrelation function for a phase 
polynomial of order 12 fitted to achieve a Taylor weighting with -35 dB sidelobes and 

4=n .  Figure 4 shows the results of a phase polynomial of order 8 fitted to achieve the 
same Taylor weighting.  Note the elevated sidelobes as the match to the chirp rate 
becomes less precise. 

Other weighting functions can be adequately achieved with lower order polynomial phase 
functions.  Generally weighting functions with higher sidelobes seem to require lower 
order polynomial phase functions for satisfactory performance.  Figure 5 shows good 
performance with −30 dB Taylor weighted sidelobes with a phase polynomial of order 8.  
Figure 6 shows good performance with −20 dB Taylor weighted sidelobes with a phase 
polynomial of order 6.  Figures 7 and 8 show good approximation to Gaussian weighted 
sidelobes with a phase polynomial of order as small as 4. 

We do acknowledge that any implementation of this architecture must contend with 
problematic aspects of integration and accumulation, including effects of finite precision 
and accumulation of errors. 

 - 16 - 



-5 -4 -3 -2 -1 0 1 2 3 4 5
0

10

20

30

40

(a)  usec

M
H

z/
us

ec

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-50

-40

-30

-20

-10

0

(b)  usec

dB

 

Figure 4.  (a) chirp rate function, and (b) autocorrelation function, for NLFM chirp with an order 12 
polynomial phase fitted to achieve a Taylor weighting with −35 dB sidelobes and 4=n .  Dotted 
lines are ideal, solid lines are actual. 
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Figure 5.  (a) chirp rate function, and (b) autocorrelation function, for NLFM chirp with an order 8 
polynomial phase fitted to achieve a Taylor weighting with −35 dB sidelobes and 4=n .  Dotted 
lines are ideal, solid lines are actual. 
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Figure 6.  (a) chirp rate function, and (b) autocorrelation function, for NLFM chirp with an order 8 
polynomial phase fitted to achieve a Taylor weighting with −30 dB sidelobes and 3=n .  Dotted lines 
are ideal, solid lines are actual. 
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Figure 7.  (a) chirp rate function, and (b) autocorrelation function, for NLFM chirp with an order 6 
polynomial phase fitted to achieve a Taylor weighting with −20 dB sidelobes and 3=n .  Dotted lines 
are ideal, solid lines are actual. 
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Figure 8.  (a) chirp rate function, and (b) autocorrelation function, for NLFM chirp with an order 6 
polynomial phase fitted to achieve a Gaussian weighting with 4.1=α .  Dotted lines are ideal, solid 
lines are actual. 
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Figure 9.  (a) chirp rate function, and (b) autocorrelation function, for NLFM chirp with an order 4 
polynomial phase fitted to achieve a Gaussian weighting with 2.1=α .  Dotted lines are ideal, solid 
lines are actual. 
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A question remains, however, “How well can we do with polynomial phase of order N if 
we don’t necessarily try to match a specific weighting function?”  This begs the question 
of whether and how some ‘optimum’ polynomial can be found for a phase function to 
generate minimum sidelobe energy in a manner similar to the technique for weighting 
functions presented by Dickey, et al.15  The answer to this question, regardless of how 
interesting it might be, is however beyond the scope of this report. 

3.3 Stepped-Parameter Chirps 
Consider first a phase function that is described by a polynomial of order N.  This implies 
that the Nth time derivative of this phase is a constant over the entire pulse width of the 
waveform.  Necessarily, the (N-1)th time derivative is linear. 

Now consider the additional degree of freedom of allowing the Nth time derivative to be 
not a single constant, but rather a sequence of constants, each constant being over some 
finite interval within the pulse width T.  That is 

( ) ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=Φ

M

m m

m
mN

N tt
rectbt

dt
d

1 τ
 (21) 

where 

m  = interval index with Mm ≤≤1 , 
 = center reference time of the mth interval, mt

mτ  = the width of the mth interval, and 
 = the sequence of constants. (22) mb

We require the intervals to be non-overlapping and span the pulse width, 

T
M

m
m =∑

=1
τ . (23) 

We note that the (N-1)th time derivative of ( )tΦ  is piece-wise linear. 

The case 1=M  degenerates into the polynomial phase function previously discussed.  
The case where M equals the total number of waveform samples degenerates into an 
arbitrary phase generator, or more precisely an arbitrary phase-derivative generator.  
Consequently, of interest are values of M between these extremes.  We would expect that 
this degree of freedom would allow fewer cascaded integrators to be needed to generate a 
waveform of acceptable fidelity.  A more general architecture of cascaded integrators and 
stepped parameters is illustrated in Figure 10. 
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Figure 10.   Cascaded integrator architecture for generating stepped parameter chirp waveforms. 

Values for  would be chosen as some function of the desired values of the Nth 
derivative of  over their respective intervals.  A representative sample might be used, 
or perhaps a mean value of all samples within the interval. 

mb
( )tΦ

Constant interval widths mτ  are also expected to offer some convenience for 
implementation. 

The case for  yields the stepped-frequency waveform discussed by Keel, et al. 1=N

The case for  yields the stepped-chirp (piece-wise linear frequency) waveform 
discussed by Griffiths and Vinagre. 

2=N

Consider the following examples, all attempting to generate a −35 dB Taylor weighted 
( 4=

2
n ) autocorrelation function with stepped parameters over equal-width time 

intervals.  Figure 11 shows the case for =N 10 and =M

2=N

.  Note that the mainlobe is 
adequately modeled, but sidelobe performance is not adequate.  Figure 12 shows the 
same Taylor weighting and , but with 40=M .  Mainlobe and near-in sidelobe 
performance is good, but distant sidelobe performance is less good.  This seems to be a 
result of how well the chirp rate is matched at the ends of the pulse. 

Figure 13 moves the stepped parameter one derivative farther from the phase, namely at 
 with , such that the chirp rate is now piece-wise linear.  Note that there is 

now very good match between mainlobes and both near and far sidelobes.  
3=N 40=M

= =
Fewer steps are required for other window functions.  For example Figure 14 shows the 
case for  and , for generating a −20 dB Taylor weighted (3N 10M 3n = ) 
autocorrelation function.  Note the good match with the mainlobe and all sidelobes. 
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Figure 11.  (a) chirp rate function, (b) zoomed autocorrelation function, and (c) expanded 
autocorrelation function for NLFM chirp with N=2 and M=10 to achieve a Taylor weighting with 
−35 dB sidelobes and 4=n .  Dotted lines are ideal, solid lines are actual. 
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Figure 12.  (a) chirp rate function, (b) zoomed autocorrelation function, and (c) expanded 
autocorrelation function for NLFM chirp with N=2 and M=40 to achieve a Taylor weighting with 
−35 dB sidelobes and 4=n .  Dotted lines are ideal, solid lines are actual. 
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Figure 13.  (a) chirp rate function, (b) zoomed autocorrelation function, and (c) expanded 
autocorrelation function for NLFM chirp with N=3 and M=40 to achieve a Taylor weighting with 
−35 dB sidelobes and 4=n .  Dotted lines are ideal, solid lines are actual. 

-5 -4 -3 -2 -1 0 1 2 3 4 5
5

10

15

(a)  usec

M
H

z/
us

ec

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

-40

-20

0

(b)  usec

dB

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-50

0

(c)  usec

dB

 

Figure 14.  (a) chirp rate function, (b) zoomed autocorrelation function, and (c) expanded 
autocorrelation function for NLFM chirp with N=3 and M=10 to achieve a Taylor weighting with 
−20 dB sidelobes and 3=n .  Dotted lines are ideal, solid lines are actual. 
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3.4 Stepped-Parameter Chirps with Frequency Feedback 
In the previous section we presented analysis of stepped-parameter chirps. We now 
extend this to the case where t  and m mτ  are chosen as a function of instantaneous 
frequency ( )tω .  The driving concept is to adjust parameters more often when parameters 
are changing more and/or quicker.  Since frequency changes faster at beginning and end 
of the pulse, this seems to be a useful indicator.  Consequently, the stepped parameter 
model becomes 

( ) ( )∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω
−

=Φ
M

m m

m
mN

N t
rectbt

dt
d

1

ωω
, (24) 

where 

m  = interval index with Mm ≤≤1 , 
mω  = center reference frequency of the mth interval, 

 = the bandwidth of the mth interval, and 
 = the sequence of constants. (25) 

mΩ
bm

We require the intervals to be non-overlapping in frequency but span the bandwidth,  

Ω=Ω∑
=

M

m
m

1
. (26) 

This architecture is illustrated in figure 15.   

…

c0c1c2cN-1

Φ(t)

b1 during interval Ω1

b2 during interval Ω2

b3 during interval Ω3

bM during interval ΩM

…
ω(t)

…

c0c1c2cN-1

Φ(t)

b1 during interval Ω1

b2 during interval Ω2

b3 during interval Ω3

bM during interval ΩM

…
ω(t)

 

Figure 15.  Cascaded integrator architecture for generating stepped parameter chirp waveforms 
using frequency feedback. 
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We note that to be meaningful we require .   2≥N

As before, values for  would be chosen as some function of the desired  values for the 
Nth derivative of Φ  but now over their respective frequency intervals.  Some 
representative sample might be used, or perhaps a mean value of all samples within the 
interval. 

mb
( )t

Constant interval widths  are also expected to offer some convenience for 
implementation. 

mΩ

Consider the following examples, all attempting to generate a −35 dB Taylor weighted 
( 4=

2
n ) autocorrelation function with stepped parameters over equal-width frequency 

intervals.  Figure 16 shows the case for =N 10 and =M

2

.  Note that the mainlobe is 
adequately modeled, and near-in sidelobe performance is good, but distant sidelobe 
performance is problematic.  The raised distant sidelobes are an artifact of employing 
equal frequency intervals, thereby imparting a periodic structure to the PSD.  This in turn 
manifests itself as elevated specific time sidelobes in the autocorrelation function.  Figure 
17 shows the same Taylor weighting and =N , but with 40=M .  Mainlobe and near-
in sidelobe performance is still good, and distant sidelobe performance is substantially 
improved, although some degradation is still apparent.   

Figure 18 moves the stepped parameter one derivative farther from the phase, namely at 
 with , such that the chirp rate is now piece-wise linear.  Note that there is 

now very good match between mainlobes and both near and far sidelobes.  
3=N 40=M

3
As with constant time intervals, fewer frequency steps are required for other window 
functions.  For example Figure 19 shows the case for =N 10=M and , for generating 
a −20 dB Taylor weighted ( 3=n ) autocorrelation function.  Note the good match with 
the mainlobe and all sidelobes. 
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Figure 16.  (a) chirp rate function, (b) zoomed autocorrelation function, and (c) expanded 
autocorrelation function for NLFM chirp with N=2 and M=10 to achieve a Taylor weighting with 
−35 dB sidelobes and 4=n .  Dotted lines are ideal, solid lines are actual. 
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Figure 17.  (a) chirp rate function, (b) zoomed autocorrelation function, and (c) expanded 
autocorrelation function for NLFM chirp with N=2 and M=40 to achieve a Taylor weighting with 
−35 dB sidelobes and 4=n .  Dotted lines are ideal, solid lines are actual. 
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Figure 18.  (a) chirp rate function, (b) zoomed autocorrelation function, and (c) expanded 
autocorrelation function for NLFM chirp with N=3 and M=40 to achieve a Taylor weighting with 
−35 dB sidelobes and 4=n .  Dotted lines are ideal, solid lines are actual. 
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Figure 19.  (a) chirp rate function, (b) zoomed autocorrelation function, and (c) expanded 
autocorrelation function for NLFM chirp with N=3 and M=10 to achieve a Taylor weighting with 
−20 dB sidelobes and 3=n .  Dotted lines are ideal, solid lines are actual. 
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3.5 Other Architectures 
In the most general sense, whereas a LFM waveform needs a constant but non-zero chirp 
rate, a NLFM waveform needs a non-constant chirp rate.  Consequently, some 
mechanism for adjusting chirp rate as a function of time is required.  Since instantaneous 
frequency is also a function of time, and typically in a monotonic fashion, the chirp rate 
could be effectively adjusted as some function of instantaneous frequency either instead 
of, or in addition to time.  These observations are captured in the general phase-function 
generating architecture illustrated in figure 20. 

c0c1

Φ(t)

ω(t)

t

Chirp-rate Generating Function

(may be linear or nonlinear)

c0c1

Φ(t)

ω(t)

t

Chirp-rate Generating Function

(may be linear or nonlinear)

 

Figure 20.  Generalized architecture for NLFM phase generating function.  The chirp rate is some 
function of time and/or instantaneous frequency. 

 

The chirp-rate generating function may be either linear or nonlinear, continuous or 
discontinuous, with derivatives that may exist or not.  Earlier examples in this report 
showed a polynomial function, parameters that stepped with time, and parameters that 
stepped with instantaneous frequency.  Indeed, Collins and Atkins discuss generating an 
instantaneous frequency with tan() or sinh() functions, although no architecture was 
illustrated or addressed for accomplishing this. 

In any case, the simplest technique for creating arbitrary functions in hardware is to use 
lookup tables.  Accumulators functioning as integrators are also rather simple to 
implement.  As the sophistication of hardware resources such as Field Programmable 
Gate Arrays (FPGAs) increases, then other more exotic functional calculation blocks 
become available to a designer, offering more options for practical chirp-rate generating 
functions. 
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4 Conclusions 
The following principal conclusions should be drawn from this report. 

• Nonlinear-FM (NLFM) waveforms offer substantial advantages over their Linear-
FM (LFM) counterparts. 

• Generally any practical range sidelobe filtering that can be accomplished with 
window functions, can also be accomplished by selecting a corresponding NLFM 
waveform.  Matched filter output results will be indistinguishable, except for an 
increase in SNR using the NLFM waveform. 

• The design procedure for a NLFM waveform is straight-forward and presented 
herein. 

• Hardware architectures for generating suitable NLFM waveforms are also 
straight-forward, with several options presented herein. 

• A number of simulation examples are provided herein to illustrate and validate 
these concepts. 
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Matlab files used: 
nonlinchirp.m 
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“To invent, you need a good imagination and a pile of junk.”  
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